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ABSTRACT

This paper addresses the problem of moving target detection (MTD)
using a distributed multi-input multi-output (MIMO) radar in a
non-homogeneous environment, where independent auto-regressive
(AR) models are used to approximate the disturbance including clut-
ter and noise as seen by different transmit-receive pairs. Following
the proposed model, we develop a parametric generalized likeli-
hood ratio test (PGLRT) for MTD with the distributed MIMO radar,
which is referred to herein as MIMO-PGLRT. It is found that the re-
sulting MIMO-PGLRT performs local adaptive subspace detection,
non-coherent combining using local decision variables and a global
threshold comparison. Asymptotic analysis of the MIMO-PGLRT
statistic shows that the proposed detector can asymptotically achieve
constant false alarm rate (CFAR). Numerical results are provided
to verify our analysis and to compare the proposed MIMO-PGLRT
with other MIMO MTD detectors.

Index Terms— Moving target detection, distributed multiple-
input multiple-output (MIMO) radar, non-homogeneous clutter,
auto-regressive process.

1. INTRODUCTION

A distributed multi-input multi-output (MIMO) radar employs
widely separated antennas within the transmit and, respectively,
receive aperture, and the transmit antennas probe a radar scene using
multiple orthogonal waveforms which are separated at each receive
antenna by matched filter processing [1–4]. A distributed MIMO
radar allows one to exploit thespatial or geometric diversityto
enhance target detection. In particular, radar targets often exhibit
significant azimuth-selective backscattering with tens of dB of fluc-
tuation in their radar cross section (RCS) [5]. As a result, it would
be difficult for a traditional monostatic or bistatic radar to detect
such targets, if the sensors are unfavorably located.

The spatial diversity of distributed MIMO radar was first dis-
cussed in [3] for stationary target detection and later extended in [4]
for moving target detection. The focus of [3] was to establish the
detection diversity gain, and the effect of clutter was ignored. Mean-
while, the effect of clutter was included in [4, 6] for moving target
detection where it was shown that distributed MIMO radar systems
can provide significant performance gain over traditional phased ar-
ray radar systems. However, the clutter was assumed to be spatially
homogeneous, i.e., the clutter covariance matrix is identical for all
transmit-receive pairs and for all resolution cells. For adaptive de-
tection, it was suggested to estimate the clutter covariance matrix
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using training data from adjacent resolution cells due to the homo-
geneous assumption.

Unlike most current efforts which assume a homogeneous
clutter environment, we consider here the moving target detec-
tion (MTD) problem with a distributed MIMO radar in anon-
homogeneousclutter environment, which arises from the multi-
static transmit-receive configuration of the distributed MIMO radar.
Specifically, for the same resolution cell, the clutter from different
transmit-receiver antenna pairs may experience non-homogeneities
in both speckle and texture due to azimuth-selective backscatter-
ing of the clutter sources. In addition, the clutter may also vary
significantly across resolution cells in a neighborhood. To address
this issue, a parametric auto-regressive (AR) model is proposed to
describe the clutter speckle and texture variations. Using indepen-
dent AR models for the disturbance including the clutter and noise
associated with each transmit-receive pair, the parametric AR model
is able to approximate non-homogeneous disturbance with a wide
variety of Doppler spectrum.

Following the proposed model, we develop a parametric gener-
alized likelihood ratio test (PGLRT) for MTD with the distributed
MIMO radar. It is found that the resulting MIMO-PGLRT performs
local adaptive subspace detection, non-coherent combining using lo-
cal decision variables, and a global threshold comparison. The local
detector first adaptively projects the test signal into two distinct sub-
spaces: one is the orthogonal complement of a data matrix formed
using the returned signal within a coherent processing interval (CPI)
and the other is the orthogonal complement of a target-free data ma-
trix. Then, it computes the energy of both projected test signals, fol-
lowed by a comparison to obtain the local test variable. Asymptotic
analysis is carried out, which shows that the MIMO-PGLRT is an
asymptotically constant false alarm rate (CFAR) detector. Numer-
ical results with both synthesized AR dataset and a general clutter
model are provided for performance evaluation.

The remainder of the paper is organized as follows. A signal
model is introduced in Section 2, where the parametric AR model for
the non-homogeneous environment is defined. Following that, the
MIMO-PGLRT is proposed and derived in closed form in Section 3.
Simulation results are provided in Section 4 to show the effectiveness
of the proposed detector. Finally, conclusions are drawn in Section 5.

2. SIGNAL MODEL

Consider a distributed MIMO radar system withM transmit antenna
elements andN receive antenna elements. The transmit and re-
ceive antennas are assumed to be on stationary platforms. We use
the standard assumption for MIMO radars that theM transmit an-
tennas probe a common area of interest usingM orthogonal wave-
forms [1–4, 6–11]. Pulsed transmission is employed as in standard
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Fig. 1. Transmit-receive pair geometry of a distributed MIMO radar.

Doppler radars [5]. Each transmitter sends a succession ofK pe-
riodic pulses, i.e.,K repetitions of an orthogonal waveform, over a
CPI. Each receiver employs a bank ofM matched filters correspond-
ing to theM orthogonal waveforms. The matched filter output is
sampled at the pulse rate viaslow-time sampling. Letxmn ∈ C

K×1

denote the vector formed by theK × 1 samples of the matched filter
output (within a CPI) at then-th receiver matched to them-th trans-
mitter. The problem of interest is to detect the presence/absence of a
moving target in the cell of interest (test cell) using the observations
{xmn}.

Specifically, the problem involves the following hypothesis test-
ing [4,6,10,11]:

H0 : xmn = cmn + wmn,

H1 : xmn = αmns(fmn) + cmn + wmn,

n = 1, . . . , N ; m = 1, . . . , M,

(1)

wherecmn denotes clutter,wmn denotes noise,s(fmn) is the signal
steering vector due to a Doppler frequencyfmn, andαmn is the am-
plitude of the signal, which is determined by the radar cross section
(RCS) of the target.

The Doppler frequency is due to the presence of a moving target,
which is usually unknown at the receivers. The moving target has a
velocity denoted by itsx- andy-component(vx, vy) , v, assuming
a 2-dimensional (2-D) motion. This motion creates different Doppler
frequencies for different transmit-receive antenna pairs. Using the
geometry depicted in Figure 1, the normalized Doppler frequency
fmn is given by [1,4,12]

fmn =
vxT

λ
(cos θtm + cos θrn)+

vyT

λ
(sin θtm + sin θrn) , (2)

whereλ denotes the operating wavelength andT is the pulse repeti-
tion interval (PRI). The signal steering vector, which is formed over
the reception ofK coherent pulses, is given by

s(fmn) =
[

1 e−j2πfmn . . . e−j2πfmn(K−1)
]T

. (3)

The unknown signal amplitudeαmn is related to the target RCS.
In general, it varies significantly with the aspect angle, due to the
azimuth-selective backscattering [3–5]. As such, in our data model,
αmn is different for different transmit-receive antenna pairs.

The disturbance componentdmn includes the cluttercmn and
the noisewmn, i.e.,dmn = cmn + wmn. Specifically, The clutter
componentscmn contain reflections from stationary (e.g., ground,
buildings) and slow moving objects (e.g., grass, forest) within the

considered test cell, while the noise componentswmn are mainly
from the thermal noise of the local receivers. We assume that the
disturbance from any transmit-receive pair is a Gaussian-distributed
vector with zero mean and covariance matrixRd,mn = Rc,mn +
Rw,mn, whereRc,mn andRw,mn denote the covariance matrices
of the clutter and noise components, respectively. As a result, the
disturbances for different transmit-receive pairs are essentially non-
stationary due to distinct disturbance covariance matricesRd,mn,
i.e.,Rd,mn 6= Rd,m′n′ , if m 6= m′ andn 6= n′ [6, 13, 14]. More-
over, for a given transmit-receive pair, the disturbances are also non-
homogeneous for different range resolution cells and, therefore, the
non-homogeneity takes place in the range domain and also across
multiple transmit-receive pairs [13,14].

In many situations, the disturbance can be modeled by an auto-
regressive (AR) process with a relatively low order. For example, the
AR order is between 2 and 5 for many radar echo modelings, while
in active sonar environments it is usually chosen to be 8 [15–19].
Moreover, for a wide-sense stationary process with a given power
spectral density (PSD), there exists an AR process such that, for each
frequency, the error between the true PSD and the AR PSD is arbi-
trarily small [18]. Therefore, we propose to use independent AR
processes to model the disturbances from multiple transmit-receive
pairs:

dmn (k) = −
Pmn
∑

p=1

amn (p)dmn (k − p) + εmn(k), k = 1, ..., K,

(4)

where the driving noiseεmn(k) ∼ CN (0, σ2
mn) with σ2

mn denoting
its variance,amn(p), p = 1, · · · , Pmn, denotes the AR coefficient
for the (m, n)-th transmit-receive pair, andPmn denotes the AR
model order. Specifically, the speckle component of the disturbance
may be described by the AR coefficientsamn(p) as well as the AR
model orderPmn, while the texture components of the disturbance
can be modeled by the variance of driving noiseσ2

mn. Overall, with
MN independent AR processes, it is possible to model the distur-
bances from theMN transmit-receive pairs and provide a paramet-
ric approach to simulate the non-homogeneity of the disturbance in
the distributed MIMO radar case

3. PARAMETRIC GLRT FOR THE MIMO-MTD

The MIMO-PGLRT detector is developed based upon the GLRT
principle, which requires the maximum likelihood estimates of the
unknown parametersαmn, σ2

mn, andamn = [amn(1), · · · , amn(Pmn)]T .
Due to statistical independence across multiple transmit-receive
pairs, the MIMO-PGLRT takes the form of

TMIMO−PGLR =

max
αmn,amn,σ

2
mn

∏

m,n

f1

(

αmn,amn, σ2
mn

)

max
amn,σ

2
mn

∏

m,n

f0 (amn, σ2
mn)

=

∏

m,n

max
αmn,amn,σ

2
mn

f1

(

αmn,amn, σ2
mn

)

∏

m,n

max
amn,σ

2
mn

f0 (amn, σ2
mn)

. (5)

For the(m, n)-th transmit-receive pair, the likelihood function of
xmn can be asymptotically expressed as

fi(xmn) =
1

(πσ2
mn)(K−Pmn)

exp

{

−
1

σ2
mn

K
∑

k=Pmn+1

|εmn(k)|2
}

,

(6)



wherei = {0, 1} denotesH0 andH1, respectively. Let

xmn = [xmn (Pmn + 1) , xmn (Pmn + 2) , · · · , xmn (K)]T ,

smn = [smn (Pmn + 1) , smn (Pmn + 2) , · · · , smn (K)]T ,

and define thePmn × 1 regressive vectors ofxmn(k) andsmn(k)

ymn(k) = [xmn(k − 1), xmn(k − 2), · · · , xmn(k − Pmn)]T ,

tmn(k) = [smn(k − 1), smn(k − 2), · · · , smn(k − Pmn)]T .

The likelihood function can be expressed as

f0(xmn) =
e
− 1

σ2
mn

K
∑

k=Pmn+1

|xmn(k)+yT
mn(k)am,n|2

(πσ2
mn)(K−Pmn)

,

f1(xmn) =
e
− 1

σ2
mn

∑

k
|(xmn(k)+yT

mn(k)amn)−αmn(smn(k)+tT
mn(k)amn)|2

(πσ2
mn)(K−Pmn)

.

(7)

Further define the following(K − Pmn) × Pmn matrices,

Ymn = [ymn(Pmn + 1),ymn(Pmn + 2), · · · ,ymn(K)]T ,

Tmn = [tmn(Pmn + 1), tmn(Pmn + 2), · · · , tmn(K)]T . (8)

The above likelihood function for the(m, n)-th transmit-receive pair
can be simplified as

f0(xmn) =
e
− 1

σ2
mn

‖xmn+Ymnamn‖2

(πσ2
mn)(K−Pmn)

,

f1(xmn) =
e
− 1

σ2
mn

‖[xmn+Ymnamn]−αmn[smn+Tmnamn]‖2

(πσ2
mn)(K−Pmn)

.

(9)

It is seen that̃xmn
∆
= xmn+Ymnamn ands̃mn

∆
= smn+Tmnamn

are the temporally whitened received signal and steering vector, re-
spectively.

3.1. Maximum Likelihood Estimation under H1

Due to the statistical independence across different transmit-receive
pairs, we can first find the ML estimate of the variance of the driving
noise of the AR model as

σ̂2
mn =

1

K − Pmn
‖[xmn + Ymn] − αmn [smn + Tmnamn]‖2 .

(10)

The ML estimate of the amplitudeαmn is obtained equivalently by
minimizing the term

‖[xmn + Ymnamn] − αmn [smn + Tmnamn]‖2 (11)

with respect to (w.r.t.)αmn, yielding

α̂mn =
(smn + Tmnamn)H (xmn + Ymnamn)

(smn + Tmnamn)H (smn + Tmnamn)
. (12)

As a result, the likelihood function is shown to be

f1

(

xmn
∣

∣α̂mn,amn, σ̂2
mn

)

=

[

K − Pmn

(eπ) (xmn + Ymnamn)H P⊥
mn (xmn + Ymnamn)

]K−Pmn

(13)

where

P
⊥
mn = I −

(smn + Tmnamn) (smn + Tmnamn)H

(smn + Tmnamn)H (smn + Tmnamn)

= I −
s̃mns̃

H
mn

s̃Hmns̃mn
. (14)

Next, we show that the projection matrixP⊥
mn is independent of the

AR coefficientamn. First, note that [15,17]

s̃mn(k + 1) =smn(k + 1) + t
T
mn(k + 1)amn

=smn(k + 1) +

Pmn
∑

p=1

amn(p)smn(k + 1 − p)

=smn(k)ej2πfmn +

Pmn
∑

p=1

amn(p)smn (k − p)ej2πfmn

=ej2πfmn s̃mn (k) , (15)

due to the definition

smn(k) = ej2π(k−1)fmn = smn(k + 1)e−j2πfmn (16)

Therefore,

s̃mn = s̃mn (Pmn + 1)
[

1, ej2πfmn , · · · , ej2π(K−Pmn−1)fmn

]T

∆
= s̃mn (Pmn + 1)ψmn, (17)

which updates the projection matrixP⊥
mn as

P
⊥
mn = I −

|s̃mn (Pmn + 1)|2ψmnψ
H
mn

|s̃mn (Pmn + 1)|2ψHmnψmn

= I −
ψmnψ

H
mn

ψHmnψmn
∆
= P

⊥
ψmn

(18)

Clearly,P⊥
mn is equivalent toP⊥

ψmn
and it is not a function ofamn.

With this observation, the ML estimate ofamn underH1 mini-
mizes the term

(xmn + Ymnamn)H P
⊥
ψmn

(xmn + Ymnamn) (19)

and the solution is

âmn,1 = −
(

Y
H
mnP

⊥
ψmn

Ymn

)−1

Y
H
mnP

⊥
ψmn

xmn. (20)

The likelihood function is simplified to

f1

(

xmn
∣

∣α̂mn, âmn,1, σ̂
2
mn

)

=

[

K − Pmn

(eπ) (xmn + Ymnâmn,1)
H

P⊥
ψmn

(xmn + Ymnâmn,1)

]K−Pmn

.

(21)

3.2. Maximum Likelihood Estimation under H0

Similarly, we can show that the ML estimates ofσ2
mn andamn can

be obtained as

σ̂2
mn =

1

K − Pmn
‖xmn + Ymnamn‖

2 , (22)

âmn,0 = −
(

Y
H
mnYmn

)−1

Y
H
mnxmn, (23)



which gives the likelihood function underH0

f0

(

xmn
∣

∣âmn,0, σ̂
2
mn

)

=

[

K − Pmn

(eπ) ‖xmn + Ymnâmn,0‖
2

]K−Pmn

.

(24)

3.3. MIMO-PGLRT Statistic

With the above results, we show that the test statistic of the MIMO-
PGLRT takes the form

T =
∏

m,n

[

‖xmn + Ymnâmn,0‖
2

(xmn + Ymnâmn,1)
H

P⊥
ψmn

(xmn + Ymnâmn,1)

]K−Pmn

(25)

With the ML estimates ofamn under bothH0 andH1, the test statis-
tic can be further simplified by noting that

(xmn + Ymnâmn,0)
H (xmn + Ymnâmn,0)

(xmn + Ymnâmn,1)
H

P⊥
ψmn

(xmn + Ymnâmn,1)

=
xHmnP

⊥
Ymn

xmn

xHmnP
⊥
[

P⊥

ψmn
Ymn

]xmn

where

P
⊥
Ymn

= I − Ymn

(

Y
H
mnYmn

)−1

Y
H
mn, (26)

P
⊥
[

P⊥

ψmn
Ymn

] = I − P
⊥
ψmn

Ymn

(

Y
H
mnP

⊥
ψmn

Ymn

)−1

Y
H
mnP

⊥
ψmn

.

(27)

Finally, the MIMO-PGLRT takes the form of

TMIMO-PGLR =
∏

m,n





xHmnP
⊥
Ymn

xmn

xHmnP
⊥
[P⊥

ψmn
Ymn]

xmn





K−Pmn

H1

≷
H0

τMIMO-PGLR,

(28)

whereτMIMO-PGLR is a threshold subject to a selected probability of
false alarm. It is found that the resulting MIMO-PGLRT performs
local adaptive subspace detection, non-coherent combining using lo-
cal decision variables, and a global threshold comparison. The local
detector first adaptively projects the test signal into two distinct sub-
spaces: one is the orthogonal complement of a data matrix formed
using the returned signal within a CPI and the other is the orthogo-
nal complement of a target-free data matrix. Then, it computes the
energy of both projected test signals, followed by a comparison to
obtain the local test variable.

In the following, the asymptotic distribution of the MIMO-
PGLRT statistic is derived.

3.4. Asymptotic Distribution of the MIMO-PGLRT Statistic

The exact distribution of the MIMO-PGLRT under both hypotheses
is difficult to analyze. Instead, the asymptotic distribution of the
GLRT is given by

TMIMO - PGLR
a
∼

{

χ2
2MN

χ2
2MN (ξ)

(29)

In other words, the MIMO-PGLRT statistic is, underH0, distributed
according to the central Chi-square distribution with degrees of free-
dom 2MN , whereas it is distributed as a non-central Chi-square

distribution with degrees of freedom2MN and non-centrality pa-
rameterξ:

ξ = 2
∑

m,n

|αmn|
2

σ2
mn

s̃
H
mns̃mn (30)

where s̃m,n = sm,n + Tm,nam,n denotes the whitened steering
vector by using the true AR coefficientamn.

From the distributions of the MIMO-PGLRT statistic, we can
analytically compute the probability of detection and the probability
of false alarm. Meanwhile, we can verify that the distribution of the
MIMO-PGLRT statistic underH0 is independent of the disturbance
parameters including the AR coefficientamn and the driving noise
varianceσ2

mn, and hence, the MIMO-PGLRT detector asymptoti-
cally achieves CFAR.

3.5. Sample Covariance Matrix-Based Detector

An existing detector for the MTD with distributed MIMO radar is
the sample covariance matrix (SCM)- based detector [4,6]:

TSCM =
∑

m,n

∣

∣aHmnĈ
−1
mnxmn

∣

∣

2

aHmnĈ
−1
mnamn

H1

≷
H0

τSCM, (31)

whereτSCM is a threshold for a given probability of false alarm, and
Ĉmn is the sample covariance matrix computed fromKt homoge-
neoustraining signalsxmn,kt ∈ C

K×1, kt = 1, 2, · · · , Kt, for the
(m, n)-th transmit-receive pair:

Ĉmn =
1

Kt

Kt
∑

kt=1

xmn,ktx
H
mn,kt

. (32)

To ensure that the sample covariance matrix is full rank,Kt > K
range training signals are required for each transmit-receive pair. In
general,Kt = 2K training signals are needed for a reasonable per-
formance. As such, the SCM detector (31) requires about2KMN
training signals in total, which may be difficult to fulfill in a non-
homogeneous environment. Compared with the SCM detector, the
proposed MIMO-PGLRT requires no range training signals and es-
timates the parameters associated with disturbance adaptively from
the received test signal. It is also computationally simpler to im-
plement the MIMO-PGLRT than the SCM detector since the SCM
requires the estimation and inversion of the sample covariance ma-
trix for each transmit-receive pair.

4. NUMERICAL EVALUATION

In this section, numerical results are presented to verify the asymp-
totic analysis and to compare the performance of the proposed
MIMO-PGLRT with that of the SCM detector (31) in non-homogeneous
clutter environments. The distributed MIMO configuration is shown
in Fig. 2, which consists of two transmitters at0◦ and65◦ relative
to the target and two receivers at−30◦ and40◦. It is noted that the
configuration is the same as the one used in [4] and [6]. The pulse
repetition frequency is 500 Hz, the carrier frequency is 1 GHz, the
target velocity is 108 km/h, and the number of pulses within a CPI is
K = 32. The above parameters lead to a normalized target Doppler
frequency of|v|TPRI/λ = 0.2 in (2).

We examine the detection performance of the MIMO-PGLRT
and the SCM detector in terms of the receiver operating charac-
teristic (ROC). Specifically, we simulate average detection perfor-
mance averaged over the target moving direction. We consider two
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Fig. 2. Distributed MIMO radar configuration used in simulation.

different target characteristic cases. In Case A, the moving direc-
tion is randomly chosen according to a uniform distribution over the
range[−180◦, 180◦] during each simulation trial, while the target
amplitude is kept constant for all transmit-receive pairs, i.e.,non-
fluctuatingtarget amplitudes. Case B considers not only a random
target moving direction as in Case A but random (fluctuating) tar-
get amplitude as well. Specifically,αm,n are generated as complex
Gaussian random variables with zero mean and varianceσ2

αm,n
= 1.

4.1. Synthesized AR Dataset

In the first example, we examine the MIMO-PGLRT and the SCM
detectors with the synthesized AR dataset, where the disturbances
from transmit-receive pairs are generated using independent AR pro-
cesses. Here, we consider the following AR models for the distur-
bances from all four transmit-receive pairs: (1)P11 = 3, σ2

11 =
1,a11 = [−0.46− j0.21,−0.17− j0.2, 0.01− j0.06]T ; (2) P12 =
2, σ2

12 = 0.5, a12 = [−0.32 + j0.24,−0.33 + j0.22]T ; (3) P21 =
1, σ2

21 = 2,a21 = [−0.1]T ; (4) P22 = 2, σ2
22 = 0.8,a22 =

[−0.34 − j0.31,−0.2 + j0.10]T . For the SCM detector, theKt =
2K training signals for each transmit-receive pair are generated us-
ing a compound-Gaussian model where thetexturecomponent is
used to capture the power variation across range resolution cells.
Particularly, we use the typical compound-Gaussian model: aK-
distributed clutter with a scaling factor 0.5 and a shape factor 2. Oth-
erwise, for each transmit-receive pair, the training signals share the
samespecklecomponent as the disturbance in the test signal.

Fig. 3 shows the ROC for both the MIMO-PGLRT and the
SCM detector of Case A with a random moving direction and
non-fluctuating target amplitude. Also included in the figure is the
asymptotic performance derived in Section 3.4. The results show
that the MIMO-PGLRT, without any range training signals, out-
performs the SCM detector which suffers from the power-varying
training signals. It is also suggested that, with onlyK = 32 tem-
poral (Doppler) samples, the simulated performance of the MIMO-
PGLRT is quite close to the derived asymptotic performance.

Fig. 4 shows the ROC curves for both the MIMO-PGLRT and
the SCM detector of Case B with a random moving direction and
fluctuating target amplitude. It confirms again that, in the case of
fluctuating target amplitude, the MIMO-PGLRT still performs better
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Fig. 3. Receiver-operating-characteristic (ROC) curves for the
MIMO-PGLRT and the SCM detectors with a random target moving
direction and non-fluctuating target amplitudes.

than the SCM detector which uses power-varying training signals.
When comparing Fig. 4 and Fig. 3 with non-fluctuating amplitudes,
a performance loss is observed for both detectors.

4.2. General Clutter Model

The above results are all based upon the synthesized AR dataset.
In the following, we consider a practical clutter model which has
widely been used to model the clutter Doppler characteristics and
is not necessarily an AR process [5, 6]. As such, we are able to
evaluate the performance of the MIMO-PGLRT in the case of model
mismatch.

The clutter temporal correlation function is expressed as [5,6]

Φ(τ) = Pce
−8π2τ2 δ2

v
λ2 , Pcφ(τ). (33)

wherePc is the clutter power, andδv is the root mean-square (RMS)
of the clutter velocity. The covariance matrixC(Pc) is obtained by
sampling the above temporal correlation function atτ = kTPRF, k =
0, · · · , K − 1 [5,6]:

C(Pc) = Pc













ρ(0) ρ(1) · · · ρ(K − 1)

ρ(1) ρ(0) · · ·
...

...
...

. . . ρ(1)
ρ(K − 1) · · · ρ(1) ρ(0)













(34)

whereρ(k) = φ(kTPRF). In addition to the clutter, the noise is
assumed to be spatially and temporally white Gaussian with zero
mean and varianceσ2

w,mn. To account for the non-homogeneous na-
ture of the clutter power caused by azimuth-selective backscattering,
the range training signals are modeled using the compound-Gaussian
model, where the texture component is assumed to be Gamma dis-
tributed with a scaling factor 0.5 and a shape factor 2, while the
speckle component is assumed to be the same as the disturbance
including the clutter and noise in the test signal. The target is sim-
ulated according to Case B with a random target moving direction



10
−2

10
−1

10
0

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Probability of false alarm

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n

K=32, M=2, N=2, SNR=20 dB

 

 

Asympotic
MIMO−PGLRT
SCM (b=2, ν=0.5)

Fig. 4. ROC curves for the MIMO-PGLRT and the SCM detectors
with a random target moving direction and fluctuating target ampli-
tudes.

and fluctuating target amplitudes. Accordingly, the signal-to-noise
ratio (SNR) is defined as

SNR=

KMN
∑

m,n

σ2
αm,n

∑

m,n

σ2
w,mn

, (35)

and the clutter-to-noise ratio (CNR) is defined as

CNR =
KMN

∑

m,n
Pc(m, n)

∑

m,n

σ2
w,mn

. (36)

Overall, the RMS values of the clutter velocity are selected to be
different for all four transmit-receive pairs:δv = [0.5, 2.5, 1.5, 1.5]
m/s and the powerPc for all four transmit-receiver pairs are ran-
domly selected (and hence different) and normalized with respect to
the CNR.

The simulated results are shown in Fig. 5 with the general clutter
model. It is seen that, with AR model ordersPmn = [2, 3, 3, 3], the
MIMO-PGLRT is able to handle the disturbance generated accord-
ing to the general clutter model and provides better detection perfor-
mance than the SCM detector which again suffers from theKt = 64
power-varying range training signals for each transmit-receive pair.
In summary, the parametric AR model provides an efficient way to
model the disturbance and the MIMO-PGLRT is capable of dealing
with non-homogeneous disturbances by exploiting the AR structure
of the disturbance.

5. CONCLUSION

This paper introduced a parametric auto-regressive model for the
disturbance received by a distributed MIMO radar. With indepen-
dent AR processes, the proposed signal model is able to describe
the non-homogeneity among different transmit-receive pairs, due to
azimuth-selective backscattering of the clutter scatters. A parametric
GLRT detector, which is referred to as MIMO-PGLRT, is proposed
to exploit the inherent AR structure of the disturbance. An asymp-
totic analysis of the MIMO-PGLRT statistic is also derived and our
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Fig. 5. ROC curves for the MIMO-PGLRT and the SCM detectors
in the general clutter model with a random target moving direction
and fluctuating target amplitudes.

results suggest that the MIMO-PGLRT asymptotically achieves a
CFAR feature. Simulation results with both synthesized AR dataset
and a general clutter model confirm that the MIMO-PGLRT is able
to handle the non-homogeneous nature of the environment seen in
distributed MIMO radar systems, and the MIMO-PGLRT outper-
forms sample-covariance-matrix based detectors which suffer with
the non-homogeneous training signals.
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