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ABSTRACT using training data from adjacent resolution cells due to the homo-
eous assumption.

Unlike most current efforts which assume a homogeneous
clutter environment, we consider here the moving target detec-

This paper addresses the problem of moving target detection (MTD%en
using a distributed multi-input multi-output (MIMO) radar in a
non-homogeneous environment, where independent auto-risvgresstion (MTD) problem with a distributed MIMO radar in aon-

(AR) models are used to approximate the disturbance including Cluhomogeneous:lutter environment, which arises from the multi-

ter and noise as seen by different ransmit-receive pairs. FoIIowmgtatiC transmit-receive configuration of the distributed MIMO radar.

Lhe é)rror;)iostedt n;(éjfllz‘z_rw? ?&Y%O\?W; t)harzérinfrtigc tggn'\jlralgerd d“krelgpecifically, for the same resolution cell, the clutter from different
ood ratio test ( ) fo € distrioute adar, yansmit-receiver antenna pairs may experience non-homogeneities

which is referred to herein as MIMO-PGLRT. Itis found that the re-; both speckle and texture due to azimuth-selective backscatter-
sulting MIMO-PGLRT performs local adaptive subspace deteCtlonIng of the clutter sources. In addition, the clutter may also vary

Phon-chofllgrent comblnlngAu5|ngtIotan decllsu_)n \?atrr']ab:\jlsMagdPaé%g_?_%lignificantly across resolution cells in a neighborhood. To address
reshoid comparison. Asymplolic analysis of the . this issue, a parametric auto-regressive (AR) model is proposed to

staglsttlits?olws thlatrrt:er ;)tropgiideetscxr ?anlafymﬁtotlfallyrach(;e scribe the clutter speckle and texture variations. Using indepen-
constant laise ala ate ( ). Numerical results are provide ent AR models for the disturbance including the clutter and noise

ESit\rge(;Itfge(:llj\;IIal\/rl]gl)l(j?Daggt;Oct%?;npare the proposed MIMO-PGLR associated with each transmit-receive pair, the parametric AR model
) is able to approximate non-homogeneous disturbance with a wide

Index Terms— Moving target detection, distributed multiple- variety of Doppler spectrum.
input multiple-output (MIMO) radar, non-homogeneous clutter, Following the proposed model, we develop a parametric gener-

auto-regressive process. alized likelihood ratio test (PGLRT) for MTD with the distributed
MIMO radar. It is found that the resulting MIMO-PGLRT performs
1. INTRODUCTION local adaptive subspace detection, non-coherent combining using lo-

cal decision variables, and a global threshold comparison. The local
A distributed multi-input multi-output (MIMO) radar employs detector first adaptively projects the test signal into two distinct sub-

widely separated antennas within the transmit and, respectivelyP2ces: one is the orthogonal complement of a data matrix formed
receive aperture, and the transmit antennas probe a radar soege us'SIng the returned signal within a coherent processing interval (CPI)

multiple orthogonal waveforms which are separated at each receiid!d the other is the orthogonal complement of a target-free data ma-
antenna by matched filter processing [1-4]. A distributed Mimotrix. Then, it computes the energy of both projected test signals, fol-

radar allows one to exploit thepatial or geometric diversityo lowed by a comparison to obtain the local test variable. Asymptotic

enhance target detection. In particular, radar targets often exhib"@lysis is carried out, which shows that the MIMO-PGLRT s an

significant azimuth-selective backscattering with tens of dB of fluc-2Symptotically constant false alarm rate (CFAR) detector. Numer-

tuation in their radar cross section (RCS) [5]. As a result, it wouldical results with both synthesized AR dataset and a general clutter

be difficult for a traditional monostatic or bistatic radar to detect™0del are provided for performance evaluation. _
such targets, if the sensors are unfavorably located. The remainder of the paper is organized as follows. A signal
The spatial diversity of distributed MIMO radar was first dis- Modelis introduced in Section 2, where the parametric AR model for

cussed in [3] for stationary target detection and later extended in [4['€ non-homogeneous environment is defined. Following that, the
for moving target detection. The focus of [3] was to establish thdIMO-PGLRT is proposed and derived in closed form in Section 3.
detection diversity gain, and the effect of clutter was ignored. MeanSimulation results are provided in Section 4 to show the effectiveness
while, the effect of clutter was included in [4, 6] for moving target of the proposed detector. Finally, conclusions are drawn in Section 5.
detection where it was shown that distributed MIMO radar systems
can provide significant performance gain over traditional phased ar-
ray radar systems. However, the clutter was assumed to be spatially

homoggneoug.e., the clutter covarlance_matrlx Is identical f(_)r all Consider a distributed MIMO radar system with transmit antenna
transmit-receive pairs and for all resolution cells. For adaptive de-

- . . . lements andV receive antenna elements. The transmit and re-
tection, it was suggested to estimate the clutter covariance matr& ; :
Ceive antennas are assumed to be on stationary platforms. We use

This work was supported in part by a subcontract with Dysetinc,  the standard assumption for MIMO radars that fifetransmit an-

for research sponsored by the Air Force Research LaboréaéiRL) under ~ tennas probe a common area of interest usifigrthogonal wave-
Contract FA8650-08-D-1303. forms [1-4,6-11]. Pulsed transmission is employed as in standard

2. SIGNAL MODEL




considered test cell, while the noise components,, are mainly
from the thermal noise of the local receivers. We assume that the
disturbance from any transmit-receive pair is a Gaussian-distributed
vector with zero mean and covariance maiRy, ... = Rcmn +

R, mn, WhereR. ., andR.,,m» denote the covariance matrices
of the clutter and noise components, respectively. As a result, the
disturbances for different transmit-receive pairs are essentially non
stationary due to distinct disturbance covariance matRgs,»,

i.e., Ra,mn # Ramns, if m #m' andn # n’ [6,13,14]. More-
over, for a given transmit-receive pair, the disturbances are also no
homogeneous for different range resolution cells and, therefare, th
non-homogeneity takes place in the range domain and also across
multiple transmit-receive pairs [13, 14].

In many situations, the disturbance can be modeled by an auto-
regressive (AR) process with a relatively low order. For example, the
AR order is between 2 and 5 for many radar echo modelings, while
in active sonar environments it is usually chosen to be 8 [15-19].
Moreover, for a wide-sense stationary process with a given power
spectral density (PSD), there exists an AR process such that, for each
frequency, the error between the true PSD and the AR PSD is arbi-
ing to the M orthogonal waveforms. The matched filter output is {rarly small [18]. Therefore, we propose to use independent AR
sampled at the pulse rate \§lw-time samplingLet x,,, € C**1 processes to model the disturbances from multiple transmit-receive
denote the vector formed by thé x 1 samples of the matched filter P&Is:
output (within a CPI) at the-th receiver matched to the-th trans- Prn
mittgr. The prqblem of inter.est is to detect the presence/absencg ofd,.. (k) = — Z amn (P)dmn (K — D) + emn(k),k=1,..., K,
moving target in the cell of interest (test cell) using the observations =1
{Xmn} 4)

Specifically, the problem involves the following hypothesis test-
ing [4,6,10, 11]: where the driving noise,, (k) ~ CN'(0, a2,,,) with 2,,, denoting

its varianceamn (p),p = 1, -+ , Pmn, denotes the AR coefficient
Ho: Xmn = Cmn + Wmn, for the (m, n)-th transmit-receive pair, ané,,,, denotes the AR
Hi: Xpn = QmnS(frn) + Comn + Wonn, (1)  model order. Specifically, the spec.klle component of the disturbance
ne1 Nem—1 M may be described by the AR coefficients., (p) as well as the AR
prr L model orderP,,,, while the texture components of the disturbance
wherec,,,, denotes cluttem,,,, denotes noises( fmn ) is the signal ~ €an bg modeled by the variance of.d.riving noyﬁgn Overall, With‘
steering vector due to a Doppler frequerfey., andamm is the am- M N independent AR processes, it is p_ossmle to m_odel the distur-
plitude of the signal, which is determined by the radar cross sectioRances from thé/ N transmit-receive pairs and provide a paramet-
(RCS) of the target. ric apprqach to simulate the non-homogeneity of the disturbance in

The Doppler frequency is due to the presence of a moving targeth€ distributed MIMO radar case
which is usually unknown at the receivers. The moving target has a
velocity denoted by its- andy-componentv,,, v,) £ v, assuming 3. PARAMETRIC GLRT FOR THE MIMO-MTD
a 2-dimensional (2-D) motion. This motion creates different Doppler
frequencies for different transmit-receive antenna pairs. Using th&he MIMO-PGLRT detector is developed based upon the GLRT
geometry depicted in Figure 1, the normalized Doppler frequenc}bl’inciple, which requires the maximum likelihood estimates of the
frn is given by [1,4,12] unknown parametets,.,., o2,,., andam, = [amn (1), , @mn(Pmn)]”.

Due to statistical independence across multiple transmit-receive
Fnn = % (o O + cos gm)+£ (SID Ot + Sin6,) , (2) pairs, the MIMO-PGLRT takes the form of

Fig. 1. Transmit-receive pair geometry of a distributed MIMO radar.

Doppler radars [5]. Each transmitter sends a successidq pé-
riodic pulses, i.e.K repetitions of an orthogonal waveform, over a
CPI. Each receiver employs a bankidfmatched filters correspond-

)\ 2
where\ denotes the operating wavelength &né the pulse repeti- amnglji(,om ﬂn h (amn7 Amn U"m)
tion interval (PRI). The signal steering vector, which is formed over MMO-PGLR = max  [] fo (@mn,02m)
the reception oK’ coherent pulses, is given by Amn ;05 n mon
2
S(fmn) = [1 6_j27rfm’n - €_j2ﬂfm/"(K_1)] T . (3) 7711—,177, Amn @H'lnazi(aagnn fl (amn’ fmn; Gm”)
ST mex f@enonn O
The unknown signal amplitude,,, is related to the target RCS. mn &mn 02,

In general, it varies significantly with the aspect angle, due to th . . . - .
azimuth-selective backscattering [3—-5]. As such, in our data mode(ifOr the (m, n)-th transmit-receive pair, the likelihood function of

amn is different for different transmit-receive antenna pairs. Xmn Can be asymptotically expressed as
The disturbance componedt,.,. includes the cluttet,,, and 1 1 K
the NoiSew . n, i.€.,dmn = Cmn + Wimn. Specifically, The clutter  f;(X,n) = kP &P { 5 Z |5mn(k')|2} ,
components:,,.,, contain reflections from stationary (e.g., ground, (M%) Timn y_po 1
buildings) and slow moving objects (e.g., grass, forest) within the (6)




wherei = {0, 1} denotesH, and H1, respectively. Let where

Xmn = [.’IL‘mn (Pmn + 1) y Tmn (Pmn + 2) y 't s Imn (K)]T ) PL —I— (S'mn + Tmnamn) (Smn + Tmnamn)H
mn H
Smn = [Smn (Pmn + 1) y Smn (Pmn + 2) 30, Smn (K)}T ) E myi;— Tmnamn) (Smn + Tmnamn)
and define the?,,,,, x 1 regressive vectors af,,,, (k) ands,,, (k) =I- ZM"Z’"" (14)
_ B B - B T mnYmn
Ymn (k) = [@mn (k= 1), Zmn(k = 2), - @mn (k= Pon)] Next, we show that the projection mati,,, is independent of the
tonn (k) = [Smn(k — 1), Smn(k —2), -+, Smn(k — Pon)] " . AR coefficienta.. First, note that [15, 17]
The likelihood function can be expressed as Smn(k+1) =smn(k + 1) + tin (k + Dams,
1 f |T (k)+yT (k)a |2 Pryn
e m k=Pmn+1 R mn e :Smn(k' + 1) + Z am"(p)smn(k + 1- p)
fO(xmn) = (K—P, ) ) p=1
(mo2in) mn P
f ( ) 672;% |(:L'1nn(k)‘i’yg;n(k)armn)*amn(srnn(k)+tZ;Ln(k)a”L")|2 :Smn J27\'fmn + Z amn Smn k p) 2 fran
1(Xmn) =

(WU?nn)(K*Pmn) . _ 327 fmn =
- I (K), (15)

due to the definition

Smn(k) — ejQﬂ'(k—l)fm,n _ Smn(k + 1)e—j27rfmn (16)

Further define the followingK' — Pp.,.) X Py matrices,

Tmn - [tmn (Pmn + 1) mn(Pmn + 2) S (K)}T . (8) Therefore'
. . T
The above likelihood function for then, n)-th transmit-receive pair  5,,,,, = 8,5 (Pon + 1) [17 e fmn 7612’T(K—Pmn—1)fmn}
can be simplified as A
e_ 021 \|an,+YmnamnH2 = Smn (Pmn + 1) /lpmn’ (17)
Jo(Xmn) = e which updates the projection mati.,,, as
. (mn+Y mnamnl—mn Smn+Tmnamn]l| pL _1_ Bmn (Pon+ D, 5
fl (an) = (71'0’2 )(K*Pmn) " |§"”1 (Pmn + 1)|2 'l/)f;{n'l/}nun
Itis seenthak,., = Xmn+ Y mn@mn aNdS,;n = Smn+Tmn@mn Apl (18)
are the temporally whitened received signal and steering vector, re- T Ymn
spectively. Clearly, P, is equivalent td,;  and itis not a function oy,.,.
With this observation, the ML estimate af,.,, underH; mini-
3.1. Maximum Likelihood Estimation under H, mizes the term
Due to the statistical independence across different transmit-receive Xmn + Yomnamn)? Pi (Xmn + Yomnamn) (19)
pairs, we can first find the ML estimate of the variance of the driving o
noise of the AR model as and the solution is
. 1 N -t
6rn = e p [Bmn + Yonn] = @ [smn + Trnnaama]|* Ant == (YouP, Yo ) YilPy, X (20)
(10)  The likelihood function is simplified to
The ML estimate of the amplitude, ., is obtained equivalently by h (X ’@ A 1.5 )
minimizing the term e I S, Sy p
13mn + Yon@ma] = Gmn [Smn + Tonama] [P (1) = K~ P
) . B (671') (X'mn + Y'mnémn,l) P$ (X'mn + Y'mnémn,l)
with respect to (W.r.t. )y, yielding e 1)
~ _ (smn + Tmnamn)H (an + Y'mna'mn) 12
QAmn = (Smm + Tmnamn)H (Smn + Trn@mn) ’ (12) 3.2. Maximum Likelihood Estimation under Hy
As a result, the likelihood function is shown to be Eim“t?”}’, V‘(’je can show that the ML estimatesagf,,, anda,,,, can
e obtained as
fl (xmn |64m7l> Amn, a"rznn ) 9 1 )
K _ Pmn K—Pmn a’mn = ﬁ ||X'mn + Y'mnamnH Pl (22)
= Hpo -1
()Gt + ) B G+ Ymnn) | o = — (YY) Vi, @



which gives the likelihood function undéf, distribution with degrees of freedo8W/ N and non-centrality pa-

P rameterg:
R ) K — Pun o
f() (an ‘amn,Oy O',an) = ~ 2 ‘Oémn|2 H
(eﬂ') ||an + Ymnamn,() | £ =2 Z 3 §mn§mn (30)
(24) o Jmn
3.3, MIMO-PGLRT Statistic wheres,,., = Sm,n + Tm,nam,» denotes the whitened steering

vector by using the true AR coefficieat,,, .
With the above results, we show that the test statistic of the MIMO-  From the distributions of the MIMO-PGLRT statistic, we can

PGLRT takes the form analytically compute the probability of detection and the probability
, K —p,,0f false alarm. Meanwhile, we can verify that the distribution of the
=] [%mn + Ymnlmn,oll MIMO-PGLRT statistic unde#/, is independent of the disturbance
A G + Y 1) Pimn (Xmn + YounAmn.1) parameters including the AR coefficieat,,, and the driving noise

(25) variances?,,,, and hence, the MIMO-PGLRT detector asymptoti-
cally achieves CFAR.
With the ML estimates o4,,,,, under bothHy andH1, the test statis-

tic can be further simplified by noting that 3.5. Sample Covariance Matrix-Based Detector
(Xmn + Yondmn,0)” Xmn + Yimnlmn,o) An existing detector for the MTD with distributed MIMO radar is
(X + Ymnémn,1)H P imn (Xmm + YounAmn.1) the sample covariance matrix (SCM)- based detector [4, 6]:
H pl H A~-1 2
X'mnP X amnCmnx Hy
= X Yo Xmn Tsem = Z —| pra— ad Z Tscw, (31)
xmnP[Pf& Ymn] K i AmnCmnamn  Ho
where whererscw is a threshold for a given probability of false alarm, and
. C.» is the sample covariance matrix computed fréfm homoge-
Py, =I1-Y., (anymn> YH (26)  neoustraining signalsx,n i, € CEXt ky =1,2,---, K, for the
- i (m,n)-th transmit-receive pair:
Pipi Ymn} =I- P'J’Emn Ymn (YﬁnPﬂ/;mnYmn) anpimn . 1 Ky
(27) Cmn = Ff Z an,ktxﬁn,lﬂ- (32)

k=1
Finally, the MIMO-PGLRT takes the form of '
K—Pmn

H L
Xmn P X Hy - ;
mn Y mn TN > mamo-peLr, deneral,K; = 2K training signals are needed for a reasonable per-

Twimo-peLR = H T oL 2 i
o anplpi Yonn] XM Ho formance. As such, the SCM detector (31) requires abéit/ N
(28) training signals in total, which may be difficult to fulfill in a non-

homogeneous environment. Compared with the SCM detector, the

wherenwimo-peLr iS a threshold subject to a selected probability of proposed MIMO-PGLRT requires no range training signals and es-

false alarm. It is found that the resulting MIMO-PGLRT performs timates the parameters associated with disturbance adaptively from

local adaptive subspace detection, non-coherent combining using lthe received test signal. It is also computationally simpler to im-

cal decision variables, and a global threshold comparison. The locplement the MIMO-PGLRT than the SCM detector since the SCM

detector first adaptively projects the test signal into two distinct subrequires the estimation and inversion of the sample covariance ma-

spaces: one is the orthogonal complement of a data matrix formetix for each transmit-receive pair.

using the returned signal within a CPI and the other is the orthogo-

To ensure that the sample covariance matrix is full radk,> K
range training signals are required for each transmit-receive pair. In

nal complement of a target-free data matrix. Then, it computes the 4. NUMERICAL EVALUATION
energy of both projected test signals, followed by a comparison to
obtain the local test variable. S In this section, numerical results are presented to verify the asymp-
In the following, the asymptotic distribution of the MIMO- tqtic analysis and to compare the performance of the proposed
PGLRT statistic is derived. MIMO-PGLRT with that of the SCM detector (31) in non-homogeneous
clutter environments. The distributed MIMO configuration is shown
3.4. Asymptotic Distribution of the MIMO-PGLRT Statistic in Fig. 2, which consists of two transmitters @t and65° relative

o to the target and two receivers-aB0° and40°. It is noted that the
The exact distribution of the MIMO-PGLRT under both hypotheses__ .. L :
is difficult to analyze. Instead, the asymptotic distribution of theconflguratlon Is the same as the one used in [4] and [6]. The pulse

T repetition frequency is 500 Hz, the carrier frequency is 1 GHz, the
GLRT is given by target velocity is 108 km/h, and the number of pulses within a CPl is
a NCIVIY K = 32. The above parameters lead to a normalized target Doppler

TwiMo - PGLR ~ { Corn () (29)  frequency offv|Tpri/A = 0.21in (2).

We examine the detection performance of the MIMO-PGLRT

In other words, the MIMO-PGLRT statistic is, undHp, distributed  and the SCM detector in terms of the receiver operating charac-
according to the central Chi-square distribution with degrees of freeteristic (ROC). Specifically, we simulate average detection perfor-
dom 2M N, whereas it is distributed as a non-central Chi-squarenance averaged over the target moving direction. We consider two
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Fig. 2. Distributed MIMO radar configuration used in simulation. _ ) o
Fig. 3. Receiver-operating-characteristic (ROC) curves for the

MIMO-PGLRT and the SCM detectors with a random target moving

different target characteristic cases. In Case A, the moving direcqlreCtlon and non-fluctuating target amplitudes.

tion is randomly chosen according to a uniform distribution over the

range[—180°, 180°] during each simulation trial, while the target . . . .
amplitude is kept constant for all transmit-receive pairs, hen- than the SCM detector which uses power-varying training signals.

fluctuatingtarget amplitudes. Case B considers not only a randonyVhen comparing Fig. 4 and Fig. 3 with non-fluctuating amplitudes,
target moving direction as in Case A but randdindtuating tar- @ Performance loss is observed for both detectors.

get amplitude as well. Specificall,.,, are generated as complex

Gaussian random variables with zero mean and variabrgzen =1. 4.2. General Clutter Model

The above results are all based upon the synthesized AR dataset.
4.1. Synthesized AR Dataset In the following, we consider a practical clutter model which has
widely been used to model the clutter Doppler characteristics and
is not necessarily an AR process [5, 6]. As such, we are able to
EValuate the performance of the MIMO-PGLRT in the case of model
ismatch.
The clutter temporal correlation function is expressed as [5, 6]

In the first example, we examine the MIMO-PGLRT and the SCM
detectors with the synthesized AR dataset, where the disturbanc
from transmit-receive pairs are generated using independent AR pr
cesses. Here, we consider the following AR models for the distur-
bances from all four transmit-receive pairs: @) = 3,07, =

1,a;; = [—0.46 — 50.21, —0.17 — 50.2,0.01 — j0.06]"; (2) P12

2
)

2_ 296
2,07, = 0.5,a12 = [—0.32 + j0.24, —0.33 + j0.22]7; (3) Po1 = B(1) = Poe ¥ T3 £ Pg(r). (33)
1,03 = 2,as = [-0.1]7; 4) Pz = 2,03, = 0.8,a2 =
[-0.34 — j0.31,—0.2 + jo.1o]T_ For the SCM detector, thE; = whereP. is the clutter power, and, is the root mean-square (RMS)

2K training signals for each transmit-receive pair are generated u$f the clutter velocity. The covariance matX(F.) is obtained by
ing a compound-Gaussian model where teeture component is  sampling the above temporal correlation functiom at kTerr, k =
used to capture the power variation across range resolution cell8,--- , K — 1[5,6]:
Particularly, we use the typical compound-Gaussian modédk-a
distributed clutter with a scaling factor 0.5 and a shape factor 2. Oth- p(0)  p(1) - p(K-1)
erwise, for each transmit-receive pair, the training signals share the (1) ©) - :
samespecklecomponent as the disturbance in the test signal. C(FP.) =P P P ' (34)

Fig. 3 shows the ROC for both the MIMO-PGLRT and the : : p(1)
SCM detector of Case A with a random moving direction and p(K—1) - p(1) p(0)
non-fluctuating target amplitude. Also included in the figure is the
asymptotic performance derived in Section 3.4. The results showhere p(k) = ¢(kTrre). In addition to the clutter, the noise is
that the MIMO-PGLRT, without any range training signals, out-assumed to be spatially and temporally white Gaussian with zero
performs the SCM detector which suffers from the power-varyingmean and variance}, ,,..,. To account for the non-homogeneous na-
training signals. It is also suggested that, with oAly= 32 tem-  ture of the clutter power caused by azimuth-selective backscattering,
poral (Doppler) samples, the simulated performance of the MIMO<the range training signals are modeled using the compound-Gaussian
PGLRT is quite close to the derived asymptotic performance. model, where the texture component is assumed to be Gamma dis-

Fig. 4 shows the ROC curves for both the MIMO-PGLRT and tributed with a scaling factor 0.5 and a shape factor 2, while the
the SCM detector of Case B with a random moving direction andspeckle component is assumed to be the same as the disturbance
fluctuating target amplitude. It confirms again that, in the case ofncluding the clutter and noise in the test signal. The target is sim-
fluctuating target amplitude, the MIMO-PGLRT still performs better ulated according to Case B with a random target moving direction
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with a random target moving direction and fluctuating target ampli-n the general clutter model with a random target moving direction

tudes.

and fluctuating target amplitudes.

and fluctuating target amplitudes. Accordingly, the signal-to-noiseesults suggest that the MIMO-PGLRT asymptotically achieves a

ratio (SNR) is defined as

KMN Y o2 .
SNR= — ™" (35)

Z U?u,mn
m,n

and the clutter-to-noise ratio (CNR) is defined as

KMN P.(m,n
CNR = Zm’n ( ) (36)

Z Ugu,mn
m,n

Overall, the RMS values of the clutter velocity are selected to be

different for all four transmit-receive pairs;, = [0.5,2.5, 1.5, 1.5]

m/s and the poweP. for all four transmit-receiver pairs are ran-
domly selected (and hence different) and normalized with respect to

the CNR.

CFAR feature. Simulation results with both synthesized AR dataset
and a general clutter model confirm that the MIMO-PGLRT is able
to handle the non-homogeneous nature of the environment seen in
distributed MIMO radar systems, and the MIMO-PGLRT outper-
forms sample-covariance-matrix based detectors which suffer with
the non-homogeneous training signals.
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